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Since its outbreak in December 2019, the novel coronavirus
2019 (COVID-19) has spread to 191 countries and caused mil-
lions of deaths. Many countries have experienced multiple epi-
demic waves and faced containment pressures from both domes-
tic and international transmission. In this study, we conduct a
multiscale geographic analysis of the spread of COVID-19 in a
policy-influenced dynamic network to quantify COVID-19 impor-
tation risk under different policy scenarios using evidence from
China. Our spatial dynamic panel data (SDPD) model explicitly
distinguishes the effects of travel flows from the effects of trans-
missibility within cities, across cities, and across national borders.
We find that within-city transmission was the dominant trans-
mission mechanism in China at the beginning of the outbreak
and that all domestic transmission mechanisms were muted or
significantly weakened before importation posed a threat. We
identify effective containment policies by matching the change
points of domestic and importation transmissibility parameters
to the timing of various interventions. Our simulations suggest
that importation risk is limited when domestic transmission is
under control, but that cumulative cases would have been almost
13 times higher if domestic transmissibility had resurged to its
precontainment level after importation and 32 times higher if
domestic transmissibility had remained at its precontainment
level since the outbreak. Our findings provide practical insights
into infectious disease containment and call for collaborative and
coordinated global suppression efforts.

COVID-19 | mobility networks | importation risk | spatial dynamic panel
data model | spatiotemporal analysis

S ince its outbreak in December 2019, the novel coronavirus
disease (COVID-19) has spread to 191 countries in the

world, resulting in over 129 million confirmed cases and more
than 2.8 million deaths worldwide by 31 March 2021 (1). Many
countries had experienced multiple epidemic waves since the ini-
tial outbreak of COVID-19. As COVID-19 is spreading around
the globe, countries need to manage both domestic spread and
international importation risks at the same time, with the rel-
ative magnitudes of these threats varying over time. However,
to the best of our knowledge, few studies have investigated the
effectiveness of containment strategies for COVID-19 account-
ing for both domestic and international threats (2, 3). Our study
fills in the research gap by quantifying COVID-19 importation
risk under different policy scenarios using evidence from China
during its transition from an infectious disease exporting country
to an importing country.

COVID-19 transmits mainly through close contact with
infected patients (4). Thus, both domestic and international pop-
ulation movements pose a great threat to the containment of
the disease. Studies have shown that travel flows explained the
initial spread from Wuhan to other cities in China (5–7), from
China to other countries (8, 9), from city to city in other countries
(10), and from neighborhood to neighborhood in a city (11–13).
Meanwhile, many countries have also long recognized the impor-
tance of managing importation risk in containing COVID-19

spread; 89 countries and regions implemented travel restrictions
during the first 5 mo of the pandemic (14). However, a multi-
scale analysis is lacking in existing COVID-19 studies to integrate
both domestic and international spread in a policy-influenced
dynamic network. Previous epidemiological literature has inte-
grated short-distance commuting flows with long-distance airline
traffic flows to simulate the spread of a hypothetical pandemic
influenza (15), yet the intensities of disease transmission at mul-
tiple scales cannot be estimated under the framework of current
epidemiological models. Built on a spatial–social network of 284
Chinese cities including Wuhan and 48 countries and regions
with direct flights to mainland China, our study explicitly quanti-
fies the magnitudes of various transmission channels, especially
the importation risk, and evaluates the effectiveness of multiple
containment policies.

When the World Health Organization (WHO) declared
COVID-19 a pandemic on 11 March 2020, China transitioned
from an infectious disease exporting country to an importing
country. Since then, China has continued its containment efforts
in the face of infections imported through inbound international
flights. In March, a series of policies took effect to control inter-
national travel flows, including a ban on admission of foreigners
and the “five one” policy that restricted both international flight
frequency and seat capacity. Additionally, policies intending to
lower the number and transmissibility of imported cases included

Significance

In the COVID-19 pandemic, countries need to manage both
the domestic spread and the spread of the virus from for-
eign countries, with their relative urgency varying over time.
Based on a dynamic network of cities and countries connected
by travel flows, we demonstrate that imported cases would
have a limited effect on a country’s confirmed cases if domes-
tic transmission mechanisms had been muted or significantly
weakened. However, uncontrolled domestic disease transmis-
sion can fuel the spread from abroad to domestic. We show
that domestic transmissibility controls should be prioritized
over travel restrictions and international transmissibility con-
trols to limit the virus spread from abroad. Our research sheds
light on the proper timing to reopen borders under different
domestic disease control scenarios.

Author contributions: Y.X. conceptualized the research idea and directed the project;
X.H. performed the estimations and simulations; L.F. collected intervention policies and
suggested the design of some simulations; Y.H., M.X., and S.G. collected and processed
data; Y.X. wrote the manuscript; X.H. and S.G. obtained the funding; and all authors
provided edited versions of the paper and helped shape the research, analysis, result
visualization, and manuscript.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: yilanxu@illinois.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2100201118/-/DCSupplemental.y

Published July 20, 2021.

PNAS 2021 Vol. 118 No. 31 e2100201118 https://doi.org/10.1073/pnas.2100201118 | 1 of 9

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
30

, 2
02

1 

http://orcid.org/0000-0003-3650-1416
http://orcid.org/0000-0003-4359-6302
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:yilanxu@illinois.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100201118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100201118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100201118
https://doi.org/10.1073/pnas.2100201118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2100201118&domain=pdf


www.manaraa.com

the 14-d preregistration of health status and negative nucleic
acid test and antibody test results prior to departure, as well as
mandatory testing and 14-d centralized quarantine upon arrival.
Before March, China had focused on the containment of domes-
tic spread. It took aggressive approaches to limit domestic travel
flows at the outbreak of the disease (7, 16–19); a total of 80 cities
in 22 provinces were under complete or partial lockdowns by
29 February 2020 (20). China also took proactive nonpharma-
ceutical interventions to lower the transmissibility of the disease.
These efforts included mask mandates, check points and quaran-
tine zones, closed management of communities, family outdoor
restrictions, delayed school opening for the spring semester, and
fast testing (see SI Appendix for a chronicle of the policies).
These policies could also raise the awareness of the infection risk
and induce health behavioral changes for self-protection. On 18
March, China claimed zero new local cases, and for the first time
all new cases were imported. Combining the efforts at the domes-
tic and international fronts, by the end of our sampling period
on 28 April 2020, a total of 82,858 cases were confirmed, among
which 50,333 were confirmed in Wuhan and 1,660 were imported
(21). By the end of March 2021, a total of 90,217 COVID-19
cases were confirmed, among which 50,357 were confirmed in
Wuhan and 5,300 were imported (22, 23).

What explains China’s trajectory in containing COVID-19 in
the face of the initial threat from the earlier epicenter and the
later threat from importation? To what extent can its experience
benefit other countries? To answer these questions, it is vital to
examine the mechanisms, dynamics, and interactions of COVID-
19 transmission at multiple geographic scales as it spreads within
cities, across cities, and across national borders. In this study, we
model the spread of COVID-19 in a policy-influenced dynamic
spatial–social network. Using China’s large-scale mobility data
and international flight data, we construct an integrated network
of 284 Chinese cities and 48 countries and regions accounting
for the dynamic effects of travel restriction policies. Using a
spatial dynamic panel data (SDPD) model, we explicitly char-
acterize different infectious disease transmission mechanisms,
including within-city, across-city, and cross-border transmission.
Under the SDPD framework, transmissibility interventions influ-
ence the parameters of these transmission mechanisms, whereas
travel restrictions influence the structure of the spatial–social
network. We adopt a Bayesian approach to allow the model to
identify the change point of each transmission mechanism (24).
By introducing parameter-specific change points for domestic
and international transmissibility, our work extends the current
SDPD models with constant coefficients (25, 26) and those with
only one common structural break for all parameters (27). We
then compare the change points with the timing of various con-
tainment policies to identify effective containment policies. We
further run simulations to quantify the counterfactual cumulative
number of cases under different scenarios when an importation
threat is present:

Yt = λ (t)W̄tYt︸ ︷︷ ︸
cross-city transmission

+ γ (t)Mwh,tywh,t︸ ︷︷ ︸
Wuhan influence

+ ρ (t)Yt−1︸ ︷︷ ︸
within-city transmission

+µ (t)W̄t−1Yt−1︸ ︷︷ ︸
diffusion effect

+ Btδ (t)︸ ︷︷ ︸
importation

+ ξtφ (t)︸ ︷︷ ︸
domestic inflow

+ Xtβ1︸ ︷︷ ︸
weather variable

+ Cβ2︸︷︷︸
number of hospital, provincial effect and other controls

+ lnαt︸︷︷︸
time effect

+ Ut︸︷︷︸
disturbances

, t = 1, 2, · · · ,T . [1]

Materials and Methods
Data. We obtain the city-level daily newly COVID-19 confirmed cases data
for the period 20 January 2020 to 28 April 2020 from the China Data Labo-

ratory (28). We supplement the data with information released by Chinese
local health commissions and news reports to generate total newly con-
firmed cases for the baseline model and domestic newly confirmed cases
for robustness checks. We obtain the country-level daily newly confirmed
cases data for the same period from the European Center for Disease Pre-
vention and Control (29). Acknowledging the average of a 5-d incubation
period of COVID-19 (30), we use the intercity daily travel inflow distribu-
tions from Baidu Qianxi (Baidu Mobility) between 13 January 2020 and 25
April 2020 for 284 cities in China to construct the domestic city network
(31). To construct the connections with 48 countries and regions with direct
flights to mainland China, we exploit the international flight information
from the OpenFlights website supplemented with the Aviation Edge data
for the routes with missing origin or destination information. We use the
Baidu Mobility data and international flight data for the same period in the
2019 lunar calendar as proxies for the unrestricted travel flows of 2020. We
also construct control variables including weather conditions, gross domestic
product, population, and the numbers of hospitals and doctors from multi-
ple sources. We describe detailed data sources and variable construction in
SI Appendix.

To illustrate the dynamic policy influence on the travel network and the
evolution of confirmed cases, we provide two snapshots in Fig. 1. Fig. 1A
plots the daily averages of confirmed cases in 44 Chinese cities with interna-
tional airports, their domestic travel flows into Beijing, and their inbound
international flights over 1 to 23 January 2020, the period before Wuhan’s
lockdown. Fig. 1B plots the same information for 24 January to 15 Febru-
ary 2020. Compared with Fig. 1A, Fig. 1B shows more confirmed cases, less
intense domestic travel flows, and fewer international flights after Wuhan
was locked down and multifacet containment policies took effect. In our
analytical sample, we include 284 Chinese cities including those without an
international airport to account for the full network integrated by domestic
travel flows and international flights.

A Spatial Dynamic Panel Data Model. We specify the following SDPD model
(Eq. 1) to distinguish between four domestic transmission mechanisms and
the international transmission. The variable Yt is the total daily newly
confirmed cases for 283 Chinese cities with available data but excluding
Wuhan. Wuhan as the early epicenter is modeled as a regressor with its
daily newly confirmed cases of ywh,t . The spatial weights matrix, W̄t , rep-
resents the domestic travel network constructed from 5-d lagged average
travel flow distributions between cities. The share of travel inflow to a
city from Wuhan is denoted as Mwh,t . Thus, the four domestic transmission
mechanisms are cross-city transmission, λ(t), i.e., the spillover effects across
cities; the spillover effect from the epicenter of Wuhan, γ(t); the within-
city transmission, ρ(t), i.e., the persistence effect; and the diffusion effect
of transmission, µ(t). To model the international transmission, we include
Bt , the daily abroad infection indexes constructed from foreign countries’
daily newly confirmed cases and their direct flights to Chinese cities. Hence,
δ(t) measures the international transmission effect. Our innovation to the
existing SDPD literature is to allow different change points for each of the
transmissibility parameters, which are identified by a Bayesian approach as
described in SI Appendix.

In addition to the above transmission mechanisms of interest, we also
control for the scale effect of travel inflow into a city (ξt), time-varying and
time-invariant control variables (Xt and C, respectively), and the day fixed
effects (lnαt). Several of these variables help control for the potential under-
reporting of confirmed cases. For instance, city-level numbers of various
types of hospitals serve as a proxy for healthcare resources, especially the
COVID-19 testing capacity. The day fixed effects control for the time-varying
yet systematic reporting pattern at the national level. The province fixed
effects account for time-invariant province-specific unobservables related to
systematically underreporting at the province level. We specify a normal dis-
tribution for the dependent variable because the reported newly confirmed
cases can be negative on some days due to changes in reporting standard
and periodic adjustments, which are partially controlled by the day fixed
effects. As robustness checks, we also run alternative model specifications
where we use different travel flow lags, weight the travel distributions by
travel flows, and allow spatial heterogeneity or a Poisson distribution for
some subsamples. All robustness checks are reported in SI Appendix.

Results
Two Episodes of COVID-19 Spread in China. We begin by exam-
ining the magnitude of each transmission mechanism and the
associated change points. Fig. 2 plots the levels and change
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Fig. 1. (A and B) A dynamic and integrated network of cities and countries. Shown are the daily averages of confirmed cases in 44 Chinese cities with
international airports, their travel flows into Beijing, and their inbound direct flights from 48 countries and regions over 1 to 23 January 2020 (A) and 24
January to 15 February 2020 (B), respectively.

points of the coefficients for the within-city transmission, the
cross-city transmission, the Wuhan influence, the domestic flow
influence, and the abroad infection index. A major finding is that
the domestic spread was largely suppressed before importation
emerged in mid-March of 2020. By 20 February, all domes-

tic transmission mechanisms had been muted or decreased to
less than 23% of their initial levels. The abroad infection index
did not predict the domestic spread of COVID-19 in China
until 18 March, yet the coefficient quickly turned statistically
insignificant after 1 April. At the initial stage, the within-city

Han et al.
Quantifying COVID-19 importation risk in a dynamic network of domestic cities and international
countries
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Fig. 2. The timeline of various containment policies in China and the change points in the coefficients for within-city transmission, cross-city transmission,
Wuhan influence, domestic flow influence, and abroad infection index.

transmission was the dominant mechanism with a coefficient of
0.708 (95% CI: 0.698 to 0.717), followed by the cross-city trans-
mission with a coefficient of 0.279 (95% CI: 0.259 to 0.295).
Somewhat surprising is the limited spillover effect from Wuhan,
which had a coefficient of 0.029 (95% CI: 0.028 to 0.030). It
was likely due to the extra stringent screening and quarantine
targeting the travel flows from Wuhan to other cities. The coef-
ficient of the diffusion effect was insignificant throughout the
sampling period and thus not included in Fig. 2. The coeffi-
cient of the inflow travel volume was positive and significant only
at the initial stage, yet the magnitude was not comparable
with the above mechanisms due to the different units of the
explanatory variables.

The change points identified by the Bayesian approach
matched the timing of the respective containment policies. On 6
February 2020, the cross-city transmission decreased from 0.279
(95% CI: 0.259 to 0.295) to 0.034 (95% CI: 0.012 to 0.056), cor-
responding with the stringent interventions targeting cross-city
transmissibility at the outbreak. Besides the complete and partial
lockdowns in 22 cities, checkpoints and quarantine zones were
implemented in over one-fifth of Chinese cities by 6 February.
The within-city transmission coefficient declined sharply from
0.708 (95% CI: 0.698 to 0.717) to 0.163 (95% CI: 0.149 to 0.176)
on 12 February. This change reflected the effects of interventions

on the within-city transmissibility. Closed community manage-
ment was enforced in over two-thirds of Chinese cities, and
family outdoor restrictions were in place in one-third of Chinese
cities by 12 February (SI Appendix). Finally, the coefficient of
domestic inflows on new COVID-19 cases was statistically signif-
icant until 19 February. The significant but brief effect matched
the massive population movement and intense contacts during
the Spring Festival travel rush (Chunyun in Chinese) that ended
on 18 February.

On the international front, since the WHO declared the global
pandemic on 11 March 2020, imported cases had increased
dramatically in China. However, with timely and effective poli-
cies, transmissibility from imported cases quickly declined. On
18 March 2020, the coefficient of the abroad infection index
increased from insignificant to 0.298 (95% CI: 0.120 to 0.459),
corresponding to the day when all new cases in China were
imported. The coefficient returned to insignificant on 2 April.
The short-lived importation effects reflected the intense efforts
to lower the transmissibility from imported cases and to reduce
international travel flows. Mandatory testing at customs was
required starting on 23 March at the four largest international
flight hubs—Beijing, Shanghai, Guangzhou, and Shenzhen. Ban
on foreigners’ entry and the “five one” international flight restric-
tions were implemented on 28 and 29 March, respectively.
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By 1 April, mandatory testing and centralized quarantine for
at least 14 d were required at all international airports in
China (SI Appendix). With these importation containment poli-
cies, the transmissibility from imported cases was significantly
abated.

Limited Importation Risk When Domestic Transmission Was under
Control. We further run simulations under different scenarios
to quantify the isolated effects of the importation transmissi-
bility, international travel flows, domestic transmissibility, and
domestic travel flows. Fig. 3 plots the cumulative cases outside of

Fig. 3. Simulated cumulative cases outside of Wuhan in the scenario when effects of transmission and effects of travel flows can be isolated. In A1 (B1),
the importation (domestic) transmissibility remained high since its emergence. In A2 (B2), the international (domestic) travel flows were unrestricted at
the 2019 level. In A3 (B3), both the importation (domestic) transmissibility remained high and the international (domestic) travel flows were unrestricted.
UB, upper bound; LB, lower bound.

Han et al.
Quantifying COVID-19 importation risk in a dynamic network of domestic cities and international
countries

PNAS | 5 of 9
https://doi.org/10.1073/pnas.2100201118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100201118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100201118


www.manaraa.com

Wuhan by the end of April 2020 in six scenarios. In Fig. 3 A1, we
allow the importation transmissibility parameter to remain at its
highest level since emergence, with everything else unchanged.
In Fig. 3 A2, we replace the 2020 international travel flows with
the 2019 level to mimic the unrestricted international travel
throughout the sample period, with everything else unchanged.
In Fig. 3 A3, we allow both importation transmissibility to remain
at its highest level since emergence and international travel flows
to be unrestricted throughout the sample period. Compared to
the actual 30,406 cumulative cases in these 283 cities (exclud-
ing Wuhan) by 28 April 2020 (solid lines), the counterfactual
cumulative cases (dashed line) would have been 1,244 (or 4.1%)
more under the high importation transmissibility, 284 (or 0.9%)
more under the unrestricted international travel flows, and 3,504
(or 11.5%) more under both high importation transmissibility
and unrestricted international travel flows. These patterns sug-
gest that importation transmissibility and international travel
flows had relatively small effects on COVID-19 transmission in
China. A critical reason for the limited importation risk was
that the domestic transmission mechanisms had been muted or
significantly weakened when importation took place, which lim-
ited the onward transmission of imported disease. Meanwhile,
when we run similar scenarios for the domestic transmission
mechanisms holding the importation mechanisms as factual, the

cumulative cases by the end of April would have been 18.44
times higher if the domestic transmissibility had remained high
(Fig. 3 B1), only 20.6% higher if domestic travel flows remained
unrestricted (Fig. 3 B2), and 28.50 times higher under both high
domestic transmissibility and unrestricted domestic flows (Fig.
3 B3). Our simulation results suggest that domestic transmis-
sion mechanisms play a more important role than importation
in COVID-19 spread. Moreover, high domestic transmissibility
is a greater threat than unrestricted domestic travel flows, imply-
ing the importance of reducing domestic transmissibility through
various intervention measures.

Moderate Importation Risk with Partially Resurged Domestic Trans-
missibility. To provide more practical insights on COVID-19
containment, we now integrate importation with domestic trans-
mission and simulate the cumulative number of cases when
domestic transmissibility was first contained and then resurged
after importation emerged. When the importation risk arose,
domestic transmission mechanisms could presumably become
more intense because of higher pressure from the international
front. Although it did not happen in China due to the strin-
gent importation control policies, it is a worthwhile case to
consider for other countries. The simulation results are pre-
sented in Fig. 4. In all scenarios, we assume that the importation

Fig. 4. Simulated cumulative cases outside of Wuhan in the scenario when domestic transmission resurged after importation. In A–D, the domestic transmis-
sibility parameters changed to 25, 50, 75, 100% of their precontainment levels after importation emerged, respectively, while the importation transmissibility
remained high since its emergence and international and domestic travel flows were both unrestricted. UB, upper bound; LB, lower bound.
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transmissibility remained high since its emergence and interna-
tional travel flows were unrestricted throughout the sampling
period. Given the finding that domestic travel flows had a smaller
effect than domestic transmissibility on COVID-19 spread, we
also assume that domestic travel flows were unrestricted. We
simulate four scenarios by changing the domestic transmissibil-
ity parameters to 25, 50, 75, 100% of their precontainment levels
(Fig. 4 A–D, respectively) after importation arises. In all sce-
narios, the counterfactual cumulative cases slightly exceeded the
factual number initially, which could be explained by unrestricted
domestic travel flows. However, the gap remained constant after
the end of the Spring Festival travel rush until importation
arose, implying a shock introduced by the rush. After impor-
tation arose, the COVID-19 spread could have evolved very
differently depending on the degree of resurgence in domestic
transmissibility. The cumulative number of cases by the end of
April would have been 40.89, 65.95, 147.35% higher if domes-
tic transmissibility parameters resurged to 25, 50, and 75% of
their precontainment level, respectively (Fig. 4 A–C). When the
domestic transmissibility resurged to 100% of its precontain-
ment level, the cumulative cases would have been almost 13
times higher than the factual cases (Fig. 4D). The simulation
results suggest that importation risk was only moderate when the
domestic transmissibility moderately resurged, but that cumula-

tive cases could increase dramatically as domestic transmissibility
resurged to its precontainment level.

Remarkably High Importation Risk If Domestic Transmissibility Had
Not Been Suppressed before Importation. Finally, we consider the
case that the domestic transmission was only partially suppressed
before importation arose, which is a more realistic case for many
countries where some of the radical containment approaches
taken by China would have been infeasible. In Fig. 5, we sim-
ulate the cumulative number of cases in scenarios where the
domestic transmissibility parameters changed to 25, 50, 75, and
100% of their initial levels after their respective change points
(Fig. 5 A–D, respectively). Again, we assume unrestricted inter-
national and domestic travel flows throughout the sampling
period and that the importation transmissibility remained high
since its emergence. In all scenarios, the counterfactual cumula-
tive cases exceeded the factual numbers before the importation
arose, yet the gap between the factual and counterfactual con-
tinued to widen over time due to the combined effects of
unrestricted domestic travel flows and the partially suppressed
domestic transmissibility. The cumulative number of COVID-19
cases by the end of April would have been 48.52, 101.97, and
256.51% higher if domestic transmissibility had been suppressed
to 25, 50, and 75% of its precontainment level, respectively.

A B

C D

Fig. 5. Simulated cumulative cases outside of Wuhan in the scenario when domestic transmissibility was not suppressed before importation. In A–D, the
domestic transmissibility parameters changed to 25, 50, 75, and 100% of their initial levels after the respective change points, respectively, while the
importation transmissibility remained high since its emergence and international and domestic travel flows were both unrestricted. UB, upper bound;
LB, lower bound.
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The cumulative number would have been 32 times higher if
domestic transmissibility remained at 100% of its precontain-
ment level. In reality, had domestic transmission remained
uncontrolled before the importation hit, domestic transmission
parameters would have been even higher than their initial lev-
els as we assumed in Fig. 5D. In this sense, the true importation
risk would be even higher than our simulation in Fig. 5D. Com-
pared to the previous case where domestic transmission had
been under control before importation, this analysis suggests that
importation would have had a much larger effect if domestic
transmission had not been under control.

Discussion
COVID-19 containment is a continued effort that requires a
dynamic and adaptive perspective. Our model has the advantages
of quantifying the magnitudes of various transmission mecha-
nisms and detecting their changes over time. Thus, the model
can be used to monitor infectious disease transmission dynam-
ics and to identify threats in real time. Our study shows that
imported infectious diseases can propagate to domestic cities via
international airports and transmit through multiscale networks.
Cities and countries around the world constitute a network
with not only a geographic structure but also a social structure
shaped by domestic travel (5, 7), migration (32), and friendships
(33), as well as international flights (8, 9), shared borders, and
trade (34). Thus, the infections and containment policies in one
place have not only local effects but also spillover effects across
cities and borders through multiscale geographical and social
connections (15, 35). Our findings call for collaborative and coor-
dinated global suppression efforts that recognize the spillover
effects (35–37).

The control of a pandemic is a complex matter that needs to
account for each country’s population demographics, socioeco-
nomic status, culture, geography, politics, climate, et cetera. With
enormous heterogeneities across countries, there is no “one-
size-fits-all” containment strategy that works for all countries.
Our study provides a framework to quantify various transmission
mechanisms and evaluate the effects of different containment
strategies. The country-specific analysis under such a framework
can provide operational insights into a country’s infectious dis-
ease containment. Based on the analysis of the expected relative
sizes of imported and domestic cases in 162 countries, schol-
ars have cautioned that countries with low domestic COVID-19
infections are at risk for a second local epidemic wave introduced
by international traffic (38). Our study uncovers the mechanisms
that make China a counterexample to this conclusion. Our sim-
ulations show that even without international travel restrictions
and importation transmission controls, imported cases would still

have limited effects on total confirmed cases in China despite
its extremely low domestic cases. This is because domestic trans-
mission mechanisms have been muted or significantly alleviated
when importation risk arose. Although the aggressive contain-
ment policies of China as calibrated in our baseline model may
not apply in other countries, our simulations provide more real-
istic scenarios of what could have happened if a more moderate
approach were taken as in other countries. An innovative discov-
ery of our study is that the importation control policies are the
most effective when domestic transmissions are at least partially
suppressed. Uncontrolled domestic transmissions can exponen-
tially magnify the effects of importation. This insight can guide
resource allocation and prioritization when a country adapts its
containment strategy as COVID-19 evolves.

Our study further discerns the effectiveness of transmissibility
control and travel restriction on both domestic and international
fronts. We find that domestic transmissibility interventions are
more important than domestic travel flow control, a point that
resonates with earlier findings from multiple studies based on
epidemiological models. Both domestic and international travel
restrictions have been shown to help decrease the confirmed
cases and delay the time to outbreak in the destinations (7,
9, 20, 39, 40); however, transmissibility interventions (such as
social distancing, testing, and timely quarantine) are more effec-
tive than travel restrictions when the disease has already been
widespread within a country (41). Travel controls such as lock-
downs work more effectively when coupled with reduction in
transmissibility (16). Our study provides insights into the interna-
tional front. It reveals that international transmissibility interven-
tions (e.g., preregistration of health status, double-negative tests,
centralized quarantine) also had greater effects than interna-
tional flight restrictions on containing the spread of COVID-19,
although both interventions at the international front would have
almost negligible effects if domestic transmissibility interventions
were not in place.

Data Availability. Resources for COVID-19 Study (CSV) data have
been deposited in Harvard Dataverse (https://projects.iq.harvard.edu/
chinadatalab/resources-covid-19). All the data that support the findings of
this study are publicly available on the GitHub repository under the MIT
license (https://github.com/GeoDS/COVID-SDPD).
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